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The characteristics of a time-delayed system with time-dependent delay time is investigated. We demonstrate
that the nonlinearity characteristics of the time-delayed system are significantly changed depending on the
properties of time-dependent delay time and especially that the reconstructed phase trajectory of the system is
not collapsed into simple manifold, differently from the delayed system with fixed delay time. We discuss the
possibility of a phase space reconstruction and its applications.
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The effect of time delay due to a finite propagation speed
of information is usually considered as the form of delay-
differential equation:ẋ= ffxstd ,xst−t0dg, where t0 is the
fixed delay time[1–12]. It has been found that the system
actually exhibits many different behaviors depending on the
nonlinearity and the delay of the system and that the dimen-
sion of the attractor rises linearly with the delay time, even
though the number of degree of freedom is small[8–11]. In
the last decade, models based on delay time have been ex-
tensively investigated in various fields such as optics[1],
biology [2,3] and chemistry[4] for the purpose of under-
standing its fundamental role and of applying it to control[5]
and communication[6,7].

The models based on fixed delay time, however, often fail
to properly cover such real factors as(a) memory effect of
the oscillator,(b) approximately known delay time, and(c)
time-dependent delay time[13–15]. To cover these factors,
Volterra first proposed a model based on distributed delays
[13]. The model has been used in various areas[14–16]. It
has been shown very recently that the distributed delay in-
duces a death phenomenon in a much larger set of param-
eters than that of the fixed delay[15]. Thus the Volterra’s
model has enabled us to understand the realistic effects of
delay times in dynamical systems.

Meanwhile, in studying the population dynamics and epi-
demic problems the delay time has been considered as a
function of state variable[17] and there have been extensive
investigations in that direction. However, there are many real
situations in which the dynamics of delay time cannot be
described by an analytic function, e.g., neural networks and
Internet[18]. So it is reasonable to introduce time-dependent
delay time as a stochastic process in those cases. In this point
of view we shall investigate the effects of time-dependent
delay time(TDT) in dynamical systems governed by a sto-
chastic process and the effects in time-delayed systems re-
main much less studied.

The main goal of this paper is to show how TDT alters the
characteristics of time-delayed systems. In addition, we ana-
lyze these characteristics with regards to application to com-
munication. We consider the modified Mackey-Glass model.
The Mackey-Glass model[2] was introduced as a model
showing the regeneration of blood cells in patients suffering
from leukemia. The modified Mackey-Glass model is given
by

ẋ =
axft − tstdg

1 + x10ft − tstdg
− bxstd,

tstd = t0 +E
0

t

jssdds, s1d

wherea=0.2, b=0.1. While in the Mackey-Glass model the
delay time is a constantt=t0, in the modified Mackey-Glass
model t is a function of time. Especially we focus on the
case wheretstd is governed by a stochastic processjstd. As

an example, we introduce the signalj̄std which is generated
by the discrete sampling of the chaotic signalxstd such that

j̄std=(hxsnTd−xfsn−1dTgj /T)L, when tP fnT,sn+1dTg. We
note that this form of the signal was taken for the conve-
nience’s sake, which allows us to adjust the correlation

length and modulation amplitude. Andj̄ actually exhibits
quasistochastic signal because we shall study the sampling
period ofTP f100,1500g which is the larger than the corre-
lation length ofx. (The correlation length ofx is tx<70 in
the same parameters of Fig. 1. Our main results would not be
changed if we use real stochastic signal for driving the delay
time, because those results are related with the fact that the
delay time is not determinable.) Here, L and T are control
parameters for the stochastic signal. They are proportional to
the amplitude oftstd and its correlation length, respectively.
The limit L→0 restores the system to the Mackey-Glass
model. Figures 1(a) and 1(b) show the temporal behavior of
the modified Mackey-Glass model with TDT. In Fig. 1(c),
one can see that thet has the correlation length ofOsTd.

One of the most sensitive measures to detect the delay
time of a system[7,11] is the one step prediction error[12].
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In the sufficiently small patchUj on sxi ,xi−td plane, it is

defined by s j
2std=s1/NUj

dovW iPUj
fx̂̇i −gjsvW idg2, where vW i

=sxi ,xi−td andNUj
are the numbers of data points in patchUj.

Here,x̂̇=xst+dtd−xstd /dt is the time variation obtained from
the observed signalxstd. dt is the sampling interval which
should be much less than the characteristic time scale of the
system(we tookdt=10−3). gj is a local linear function such
that gjsvW jd=bj +aW j ·vW j, where the parametersbj and aW j are
determined by the least square fitting. When this occurs,s j is
minimized[19]. Therefore, the one step prediction errors is
the average of the minimizeds j, i.e., s=ks jl.

Figure 2 shows the one step prediction errors for the
modified Mackey-Glass model depending onL. In the case
of a fixed delay time(filled triangles) one can see thats
(which has a value ofs=1.8310−5) has a sharp peak att
=200. However, if the time dependency of delay time is
turned on, i.e.,LÞ0, the depth of the peak decreases as the
L increases. Eventually, the peak almost disappears. AtL
=50 (filled circles) the prediction error has an almost con-

stant value of 3.2310−2. This means that if one detects the
fixed delay timet0, one can predict the time series 103 times
as precisely. As we shall see, it is closely related to the fact
that the phase trajectory on thefẋstd ,xstd ,xst−tdg space col-
lapsed into the simple manifold. This is the crucial feature of
the system based on the fixed delay timet0. And Bünneret
al. [12] have shown that the delayed system can be modeled
by the time-delay embedding whent0 is exactly detected.
Meanwhile, in the case of TDT any detectable imprint is not
left in the prediction error above the appropriate value ofL.
This feature indicates that the conventional modeling method
for the delayed systems is not directly applicable.

Figure 3 shows the reconstructed phase trajectories for
fixed and TDTs infxstd ,xst−tdg space. When the delay time
is fixed (the first row of Fig. 3), the trajectory suddenly col-
lapses into a quite simple shape at the value oft=200 [Fig.
3(b)], while the others look very complex(we shall discuss
the feature quantitatively in the next paragraph). This ex-
plains why the prediction error sharply drops in the case of
fixed delay time(filled triangles in Fig. 2). On the contrary,
when the delay time is time dependent(the second row of
Fig. 3), one cannot see any qualitative difference which co-
incides with the fact that the prediction error is almost con-
stant in Fig. 2(filled circles). This is a genuine effect caused
by the nature of TDT. It presents a possibility that the de-
layed system with TDT can be used in communication with
better performance.

To quantify the complexity of the attractors, we evaluate
the filling factor which is the normalized number of hyper-
cubes visited by the projected trajectory[12]. It is one of the
measures which directly show the complexity of the pro-
jected attractor. The results are presented in Fig. 4. In the
case of TDT(filled circles in Fig. 4), the taken phase space is
filled by 10% and it hardly depends on the chosen time lagt
for reconstruction which explains the above description for
Figs. 3(d)–3(f). In case of fixed time delay, if the time lag
appropriately chosen ast=200, the attractor only fills 1% of
the taken phase space. Thus one may say that the recon-

FIG. 1. Temporal behaviors of the modified Mackey-Glass
model in the presence of TDT whent0=200, T=100, andL=10:
(a) state variablex; (b) the delay time;(c) autocorrelation of the
time-dependent delay time.

FIG. 2. One step prediction errors forL=0 (filled triangle), L
=10 (square), andL=50 (filled circle).

FIG. 3. Reconstructed phase trajectories of the modified
Mackey-Glass model infxstd ,xst−tdg space:(a)–(c) fixed delay
time sL=0d; (d)–(f) time-dependent delay time(L=50). The recon-
structions were performed at the lag timet=190 [(a) and(d)], 200
[(b) and (e)], and 210[(c) and (f)], respectively.
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structed attractor of Fig. 3(e) is 10 times as complex as that
of Fig. 3(b) based on the values of the filling factors.

In order to perform phase space reconstruction, the first
step one must take is to find out the lag timete for the
delayed coordinates[20,21]. It is usually determined by the
first minimum point of the average mutual information. The
average mutual information is defined by[22]

Istd = o
xsnd,xsn+td

Pfxsnd,xsn + tdglog2F Pfxsnd,xsn + tdg
PfxsndgPfxsn + tdgG .

s2d

Figure 5 shows the average mutual information in the
cases of fixed delay and TDT. For the fixed delay time, the
average mutual information has a peak neart=200, which
has the same implication with that of the prediction error in
Fig. 2. On the other hand, for TDT, the average mutual in-
formation has thed function shape. This means that the in-
formation of the observed time series deteriorates more rap-

idly by TDT, compared to that of the fixed delay. Both of
them have a wide range of degenerated minimum. In the
latter, one can expect that the delay coordinate for phase
space reconstruction would not be so unique because the
degenerated region is wider than that of the former.

To analyze the global effects of the system according to
the property of the driving signal, we consider the metric
entropy defined byh=oxsnd Pfxsndglog2[1/Pfxsndg] which is
a measure of complexity or strength of nonlinearity of the
system[8]. It corresponds to the value of the average mutual
information Istd at t=0. Figure 6 shows the entropy as a
function ofT andL. The value of entropy increases asL and
1/T both increase, while in the delayed system with a fixed
delay time it is almost constant[8]. Therefore, we understand
that the profile of TDT plays a significant role that controls
the complexity and nonlinearity of the time-delayed system.
All observations lead us to conclude that the nonlinearity
characteristics of the time-delayed system are significantly
changed depending on the properties of time-dependent de-
lay time and, especially, that the reconstructed phase trajec-
tory of the system is not collapsed into simple manifold,
differently from the delayed system with fixed delay time.

In conclusion, we have studied the characteristics of the
time-delayed system in the presence of TDT. By presenting
the numerical evidence, we have shown that the time-
delayed system with TDT transits to the uncollapsible hyper-
chaotic system. This fact implies that the phase space recon-
struction of the systems with TDT is hardly possible. The
reason is that phase reconstruction methods for a time-
delayed system usually assume the exact determination of
fixed delay time[11,12]. We expect that these characteristics
of the time-delayed system with TDT should be useful to
implement communication systems.

The authors thank M.-W. Kim and S.-Y. Lee for helpful
discussions. This work was supported by Creative Research
Initiatives of the Korean Ministry of Science and Technol-
ogy.

FIG. 4. The filling factor as a function of lag timet. It is evalu-
ated onfxstd ,xst−td , ẋstdg phase space whenL=0 (squares) and
L=50 (circles). We have taken the 10231023102 number of hy-
percubes for the regionxP f0.0,2.0g, xst−tdP f0.0,2.0g, and ẋ
P f−0.1,0.1g and we have iterated the systems during 53104 sec-
onds for each point.

FIG. 5. Average mutual information of the modified Mackey-
Glass model:(a) fixed delay timesL=0d and (b) TDT at L=270.

FIG. 6. Entropy of the modified Mackey-Glass model as a func-
tion of T andL.
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