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The characteristics of a time-delayed system with time-dependent delay time is investigated. We demonstrate
that the nonlinearity characteristics of the time-delayed system are significantly changed depending on the
properties of time-dependent delay time and especially that the reconstructed phase trajectory of the system is
not collapsed into simple manifold, differently from the delayed system with fixed delay time. We discuss the
possibility of a phase space reconstruction and its applications.
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The effect of time delay due to a finite propagation speed The main goal of this paper is to show how TDT alters the
of information is usually considered as the form of delay-characteristics of time-delayed systems. In addition, we ana-
differential equation:x=f[x(t),x(t—7)], where 7, is the lyze these characteristics with regards to application to com-
fixed delay time[1-12. It has been found that the system munication. We consider the modified Mackey-Glass model.
actually exhibits many different behaviors depending on therhe Mackey-Glass modgR2] was introduced as a model
nonlinearity and the delay of the system and that the dimenshowing the regeneration of blood cells in patients suffering

sion of the attractor rises linearly with the delay time, evenfrom leukemia. The modified Mackey-Glass model is given
though the number of degree of freedom is sm&H11]. In by

the last decade, models based on delay time have been ex-

tensively investigated in various fields such as opfit __a{t- (V)]

biology [2,3] and chemistry{4] for the purpose of under- x= 1+x9t - 7(1)]

standing its fundamental role and of applying it to confEjl

and communicatiof6,7]. t
The models based on fixed delay time, however, often fail ) =79+ f &(s)ds, (1

to properly cover such real factors é® memory effect of 0

the oscillator,(b) approximately known delay time, and)  \herea=0.2,b=0.1. While in the Mackey-Glass model the

time-dependent delay timgl3-19. To cover these factors, gejay time is a constant= 7, in the modified Mackey-Glass

\olterra first proposed a model pased.on distributed delays,odel r is a function of time. Especially we focus on the

[13]. The model has been used in various afd&@s-16. It 556 whered(t) is governed by a stochastic process. As

has been shown very recently that the distributed delay in- _ .= S

duces a death phenomenon in a much larger set of pararfil! €X@mple, we introduce the sigrét) which is generated

eters than that of the fixed deldg5]. Thus the Volterra's Y the discrete sampling of the chaotic sigret) such that

model has enabled us to understand the realistic effects @ft)={x(nT)-x[(n-1)T]}/T)A, whente [nT,(n+1)T]. We

delay times in dynamical systems. note that this form of the signal was taken for the conve-
Meanwhile, in studying the population dynamics and epi-nience’s sake, which allows us to adjust the correlation

demic problems the delay time has been considered as|gngth and modulation amplitude. Andl actually exhibits
function of state variabl§l7] and there have been extensive quasistochastic signal because we shall study the sampling
investigations in that direction. However, there are many reaperiod of T e [100, 150Q which is the larger than the corre-
situations in which the dynamics of delay time cannot bejation length ofx. (The correlation length of is 7~ 70 in
described by an analytic function, e.g., neural networks anghe same parameters of Fig. 1. Our main results would not be
Internet[18]. So it is reasonable to introduce time-dependenthanged if we use real stochastic signal for driving the delay
delay time as a stochastic process in those cases. In this poiffhe hecause those results are related with the fact that the
of view we shall investigate the effects of time-dependen{ye|ay time is not determinabeHere, A and T are control
delay time(TDT) in dynamical systems governed by a sto- parameters for the stochastic signal. They are proportional to
chastic process and the effects in time-delayed systems rgse amplitude ofr(t) and its correlation length, respectively.
main much less studied. The limit A—O0 restores the system to the Mackey-Glass
model. Figures ) and Xb) show the temporal behavior of
the modified Mackey-Glass model with TDT. In Fig(c},

—bx(t),

*Electronic address: whkyes@empal.com one can see that thehas the correlation length @(T).
"Electronic address: chmkim@mail.paichai.ac.kr One of the most sensitive measures to detect the delay
*Electronic address: yjpark@ccs.sogang.ac.kr time of a systenj7,11] is the one step prediction errfit2].
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FIG. 1. Temporal behaviors of the modified Mackey-Glass FIG. 3. Reconstructed phase trajectories of the modified
model in the presence of TDT wheg=200, T=100, andA=10:  Mackey-Glass model ilx(t),x(t-7)] space:(a—(c) fixed delay

(a) state variablex; (b) the delay time;(c) autocorrelation of the time (A=0); (d)~(f) time-dependent delay tim@ =50). The recon-
time-dependent delay time. structions were performed at the lag time190[(a) and(d)], 200
[(b) and(e)], and 210[(c) and (f)], respectively.

In the sufficiently small patchJ; on (%, %-;) plane, it is stant value of 3.X 1072, This means that if one detects the
defined by O-jZ(T):(l/NUj)Ez;iEUj [%-g;(v))]% where v; fixed delay timer,, one can predict the time series*tlines
=X, Xi—) andNUj are the numbers of data points in pat¢h  as precisely. As we shall see, it is closely related to the fact

Here, X=x(t+ 8t)-x(t)/ &t is the time variation obtained from that the phase trajectory on the(t), x(t), x(t-7)] space col-

the observed signal(t). &t is the sampling interval which lapsed into the simple manifold. This is the crucial feature of

should be much less than the characteristic time scale of the'© system based on the fixed delay timeAnd Bunneret
system(we took &t=103). g; is a local linear function such al. [12] have shown that the delayed system can be modeled

that g;(u)=b; +4, -G;, where the parameteds; and & are by the time-delay embedding wher is exactly detected.

determined by the least square fitting. When this ocayris I'\élf?ail;]vtvr?e”e,rlen dit::]t?oiaesrergrf ;3[3) T,:?Kedaete%at?iztm:Bte\'ifmt
minimized[19]. Therefore, the one step prediction ereois P bprop

the average of the minimized;, i.e., o=(c"). This feature indicates that the conventional modeling method
Figure 2 shows the one étep,prediétion errors for the]cor t_he delayed systems is not directly apphcable_. :
modified Mackev-Glass model depending nin the case Figure 3 shows the reconstructed phase trajectories for
of a fixed delayytime(filled trianglgs oneg can see thair fixed and TDTSs inlx(t), x(t~7)] space. When the delay time
(which has a value ob=1.8x 10°5 has a sharp peak at is fixed.(the first row _of Fig. 3, the trajectory suddenly.col—
~200. However. if the tirﬁe dependency of delay time iSIapses into a quite simple shape at the value=200 [Fig.
turnea on, i.e A%o the depth of the peak decreases as th 3(b)], while the other_s lOOk. very complexve shall d_iscuss
A increas’eé .Event,ually the peak almost disappears\ At The feature quantitatively in the next paragrapfhis ex-

' ' plains why the prediction error sharply drops in the case of

=50 (filled circleg the prediction error has an almost con- fixed delay time(filled triangles in Fig. 2 On the contrary,
when the delay time is time dependdiiie second row of
Fig. 3), one cannot see any qualitative difference which co-
incides with the fact that the prediction error is almost con-
stant in Fig. 2(filled circles. This is a genuine effect caused
by the nature of TDT. It presents a possibility that the de-
layed system with TDT can be used in communication with
better performance.

To quantify the complexity of the attractors, we evaluate
the filling factor which is the normalized number of hyper-
cubes visited by the projected trajectg@y?]. It is one of the
measures which directly show the complexity of the pro-
jected attractor. The results are presented in Fig. 4. In the
1 case of TDT(filled circles in Fig. 4, the taken phase space is
1% - i : o - o : 0 filled by 10% and it hardly depends on the chosen timerag

T for reconstruction which explains the above description for
Figs. 3d)-3(f). In case of fixed time delay, if the time lag

FIG. 2. One step prediction errors far=0 (filled triangle), A appropriately chosen as=200, the attractor only fills 1% of

=10 (squarg, and A=50 (filled circle). the taken phase space. Thus one may say that the recon-
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FIG. 4. The filling factor as a function of lag time It is evalu- 12001400

ated on[x(t),x(t—7),x(t)] phase space when=0 (squarey and
A=50 (circles. We have taken the 2 10°x 10? number of hy-
percubes for the regiox [0.0,2.0, x(t—7) €[0.0,2.9, and x FIG. 6. Entropy of the modified Mackey-Glass model as a func-
e[-0.1,0.] and we have iterated the systems during B)* sec-  tion of T and A.
onds for each point.
idly by TDT, compared to that of the fixed delay. Both of

structed attractor of Fig.(8) is 10 times as complex as that them have a wide range of degenerated minimum. In the
of Fig. 3(b) based on the values of the filling factors. latter, one can expect that the delay coordinate for phase

In order to perform phase space reconstruction, the firsspace reconstruction would not be so unique because the
step one must take is to find out the lag timefor the  degenerated region is wider than that of the former.
delayed coordinateg20,21). It is usually determined by the To analyze the global effects of the system according to
first minimum point of the average mutual information. Thethe property of the driving signal, we consider the metric

average mutual information is defined [82] entropy defined by=X,, P[x(n)]log,[1/P[x(n)]] which is
a measure of complexity or strength of nonlinearity of the
S { P[x(n),x(n+ 7)] } system[8]. It corresponds to the value of the average mutual
I(7) = P[x(n),x(n+ 7)]lo : : ' ' =0. Fi
(1) s [x(n),x(n+ 7)]log, PIx(N)JP[X(n + 7] information I(7) at 7=0. Figure 6 shows the entropy as a

function of T andA. The value of entropy increases.asnd
(2)  1/T both increase, while in the delayed system with a fixed

Figure 5 shows the average mutual information in thedelay time it is almost constaf8]. Therefore, we understand

cases of fixed delav and TDT. Eor the fixed delay time. th that the profile of TDT plays a significant role that controls
13y . ) y ime, &e complexity and nonlinearity of the time-delayed system.
average mutual information has a peak nea200, which

S . o . All observations lead us to conclude that the nonlinearity
has the same implication with that of the prediction error "Ncharacteristics of the time-delayed system are significantl
Fig. 2. On the other hand, for TDT, the average mutual in- Y y 9 Y

formation has the5 function shape. This means that the in- changed depending on the properties of time-dependent de-

formation of the observed time series deteriorates more rapl%?r/ytlgetﬁgds’yi?gr?'g ”ﬁotp ?:torlg e[)ézgo%?[gu;ﬁgIshrisaiiiﬁjdec-

differently from the delayed system with fixed delay time.

o ] In conclusion, we have studied the characteristics of the
- @ ] time-delayed system in the presence of TDT. By presenting
the numerical evidence, we have shown that the time-
delayed system with TDT transits to the uncollapsible hyper-
) . _./7)\\-_“ . ] chaotic system. This fact implies that the phase space recon-
50 100 150 200 250 300 struction of the systems with TDT is hardly possible. The

[ e reason is that phase reconstruction methods for a time-
- (b) - delayed system usually assume the exact determination of
] fixed delay time[11,12. We expect that these characteristics
of the time-delayed system with TDT should be useful to
implement communication systems.
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